您好,歡迎光臨艾維締科技懷來有限公司官方網(wǎng)站!
熱線:0313-5935521
組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法)
組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法)是一套方便的工具,允許實(shí)驗(yàn)者測(cè)量特異性靶向組蛋白H3賴氨酸27 (H3- K27)的單個(gè)組蛋白甲基轉(zhuǎn)移酶的活性或抑制。 該試劑盒可隨時(shí)使用,并提供進(jìn)行成功的HMT活性/抑制實(shí)驗(yàn)所需的所有必要成分,而不需要放射性或任何特殊設(shè)備。
組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法)是專為測(cè)量組蛋白H3在賴氨酸27的HMT而設(shè)計(jì)的。 在使用該試劑盒的試驗(yàn)中,組蛋白底物被穩(wěn)定地捕獲在條帶孔上。 HMT酶將一個(gè)甲基從Adomet轉(zhuǎn)移到組蛋白H3底物,使底物在賴氨酸9處甲基化。 甲基化組蛋白H3-K27可被高親和力抗體識(shí)別。 甲基化H3-K27的比例或數(shù)量與酶活性成正比,可以通過HRP共軛的二級(jí)抗體顯色系統(tǒng)進(jìn)行定量。 然后根據(jù)HMT轉(zhuǎn)化H3-K27的甲基化量計(jì)算HMT活性。
組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法),具有如下優(yōu)勢(shì)和特點(diǎn):
- 非??焖俚某绦颍梢栽?小時(shí)內(nèi)完成 。
- 安全、創(chuàng)新的比色分析,無需放射性、提取和色譜。
- H3-K27組蛋白甲基轉(zhuǎn)移酶活性/抑制的特異性測(cè)定。
- 微孔板條狀格式使分析靈活:手工或高通量分析。
- 極其簡(jiǎn)單、可靠和一致的分析條件。
產(chǎn)品組分
組分內(nèi)容 |
型號(hào):A-P-3005-48(48次) |
型號(hào):A-P-3005-96(96次) |
儲(chǔ)存溫度 |
HE1(10X Wash Buffer) | 11ml | 22ml | 4°C |
HE2(Histone Assay Buffer) | 1.5ml | 3ml | 4°C |
HE3(Adomet)* | 25ul | 50ul | -20°C |
HE4(Biotinylated Substrate,25ug/ml)* | 100ul | 200ul | -20°C |
HE5(HMT Standard,10ug/ml)* | 10 ul |
20 ul |
-20°C |
HE6(Capture Antibody,100ug/ml)* | 25 ul |
50 ul |
4°C |
HE7(Detetion Antibody,200ug/ml)* | 10ul | 20ul | -20°C |
HE8(Developer Solution) | 6ml | 12ml | 4°C |
HE9(Stop Solution)* | 3ml | 6ml | 室溫 |
Control Enzyme(300ug/ml)* | 5ul | 10ul | -20°C |
8-Well Assay Strips(With Frame) | 6 | 12 | 4°C |
說明書 |
1份 | 1份 |
室溫 |
文件資源
文件下載 | 文件內(nèi)容 | 資源說明 |
A-P-3005-組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法) | 操作手冊(cè) | |
A-P-3005-組蛋白H3K27甲基轉(zhuǎn)移酶活性/抑制分析試劑盒(比色法)相關(guān)說明 | 宣傳單頁 |
注意事項(xiàng)
保存建議 | 廠家推薦常溫運(yùn)輸。當(dāng)您收到產(chǎn)品后,按照說明書建議保存。 |
警告 | 一般僅供科研使用,請(qǐng)勿用于臨床與診斷。不要將漂白劑或酸性溶液直接添加到樣品制備的廢物中。 |
FAQ
Sharma M et. al. (November 2021). Therapeutic Effects of Dietary Soybean Genistein on Triple-Negative Breast Cancer via Regulation of Epigenetic Mechanisms Nutrients. 13(11):3944.
Kitchen GB et. al. (October 2021). The histone methyltransferase Ezh2 restrains macrophage inflammatory responses. FASEB J. 35(10):e21843.
Cheng Z et. al. (May 2021). Serum-Derived Small Extracellular Vesicles From Diabetic Mice Impair Angiogenic Property of Microvascular Endothelial Cells: Role of EZH2. J Am Heart Assoc. 10(10):e019755.
Shirani M. et. al. et. al. (October 2020). Comparative Epigenomic Profiling and Gene Expression Patterns of Zebrafish, Danio rerio, Administrated by Dietary Agrimos® Journal of Agricultural Science and Technology. 22(6):1487-1500.
Huq S et. al. (June 2020). Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther.
Steed KL et. al. (January 2020). SAHA and EGCG Promote Apoptosis in Triple-negative Breast Cancer Cells, Possibly Through the Modulation of cIAP2. Anticancer Res. 40(1):9-26.
Mai J et. al. (June 2019). Negative regulation of miR-1275 by H3K27me3 is critical for glial induction of glioblastoma cells. Mol Oncol.
Paul B et. al. (June 2018). The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation. Int J Mol Sci. 19(6)
Sato A et. al. (May 2018). [A Succinate Ether Derivative of Tocotrienol Enhances Dickkopf-1 Gene Expression through Epigenetic Alterations in Malignant Mesothelioma Cells]. Pharmacology. 102(1-2):26-36.
Caruso LB et. al. (February 2018). Poly(ADP-ribose) Polymerase 1, PARP1, modifies EZH2 and inhibits EZH2 histone methyltransferase activity after DNA damage. Oncotarget. 9(12):10585-10605.
Wijenayake S et. al. (January 2018). Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle. Gene.
Tu W et. al. (November 2017). Arsenite downregulates H3K4 trimethylation and H3K9 dimethylation during transformation of human bronchial epithelial cells. J Appl Toxicol.
Kowluru RA et. al. (January 2017). Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol.
Cechinel LR et. al. (October 2016). Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats. Behav Brain Res. 313:82-7.
Navakauskien? et. al. (May 2016). Histone demethylating agents as potential S-adenosyl-L-methionine-competitors Med Chem Comm.
Veazey KJ et. al. (September 2015). Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin. 8:39.
Zhang J et. al. (September 2015). Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med.
Wan J et. al. (April 2015). PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res. 43(7):3591-604.
De la Cruz-Hernandez E et. al. (February 2015). Ribavirin as a tri-targeted antitumor repositioned drug. Oncol Rep.
Liu J et. al. (January 2015). Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci. 35(1):352-65.
Morishita M et. al. (December 2014). In vitro histone lysine methylation by NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L. BMC Struct Biol. 14(1):25.
Malmgren S et. al. (April 2013). Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem. 288(17):11973-87.
Latrasse D et. al. (March 2013). Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Res. 41(5):2907-17.
Li Y et. al. (January 2013). Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One. 8(1):e54369.
Batra V et. al. (March 2012). Interaction between γ-radiation and dietary folate starvation metabolically reprograms global hepatic histone H3 methylation at lysine 4 and lysine 27 residues. Food Chem Toxicol. 50(3-4):464-72.
Rugg-Gunn PJ et. al. (June 2010). Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci U S A. 107(24):10783-90.
Nakade K et. al. (April 2009). JDP2 (Jun Dimerization Protein 2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence. J Biol Chem. 284(16):10808-17.
推薦產(chǎn)品
免責(zé)申明:本網(wǎng)站銷售的所有產(chǎn)品均不得用于人類或動(dòng)物之臨床診斷或治療,僅可用于工業(yè)或者科研等非醫(yī)療目的。(獲得國家相關(guān)部門批準(zhǔn)的產(chǎn)品除外)
版權(quán)所有:艾維締科技懷來有限公司 備案號(hào):冀ICP備20011415號(hào)